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Abstract We apply the cross-entropy (CE) method to problems in clustering and
vector quantization. The CE algorithm for clustering involves the following iterative
steps: (a) generate random clusters according to a specified parametric probability
distribution, (b) update the parameters of this distribution according to the Kullback—
Leibler cross-entropy. Through various numerical experiments, we demonstrate the
high accuracy of the CE algorithm and show that it can generate near-optimal clusters
for fairly large data sets. We compare the CE method with well-known clustering
and vector quantization methods such as K-means, fuzzy K-means and linear vector
quantization, and apply each method to benchmark and image analysis data.

Keywords Cross-entropy method - Clustering - Vector quantization - Simulation -
Global optimization

1 Introduction

Clustering and vector quantization are concerned with the grouping of unlabeled
“feature” vectors into clusters, such that samples within a cluster are more similar to
each other than samples belonging to different clusters. Usually, it is assumed that
the number of clusters is known in advance, but otherwise no prior information is
given about the data. Applications of clustering and vector quantization can be found
in the areas of communication, data compression and storage, database searching,
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pattern matching, and object recognition. It is out of the scope of this paper to discuss
the vast amount of literature on clustering. For details on clustering applications and
algorithms we refer to [3, 11, 17, 18, 23, 28] and references therein.

In mathematical terms, the clustering problem reads as follows: given a dataset
Z ={zq,...,z,} of points in some d-dimensional Euclidean space, partition the data
into K clusters Ry,...,Rg (with R; N R; = @, for i # j, and U;R; = Z), such that some
empirical loss function (performance measure) is minimized. A typical loss function is

K
> > =gl (1)

j=1 z€R;

where ¢; represents the cluster center or centroid of cluster R;. The objective is to find
a (K - d)-dimensional vector of centroids ¢ = (cy, ..., cx) and the corresponding parti-
tion {Ry, ..., Rk} that minimizes (1). This definition also combines both the encoding
and decoding steps in vector quantization [28]. Namely, we wish to “quantize” or
“encode” the vectors in Z in such a way that each vector is represented by one of K
source vectors ¢1, . . ., €k, such that the loss (1) of this representation is minimized.

Most well-known clustering and vector quantization methods update the vector
of centroids, starting from some initial choice and using iterative (typically gradi-
ent-based) procedures. It is important to realize that in this case (1) is seen as a
function of the centroids, where each point z is assigned to the nearest centroid, thus
determining the clusters. It is well known that this type of problem —optimization
with respect to the centroids—is highly multi-extremal and, depending on the initial
clusters, the gradient-based procedures converge to a local minimum rather than a
global minimum. A standard heuristic is the K-means (KM) algorithm [28]; a useful
modification is the fuzzy K-means (FKM) algorithm [5]. Another well-known method
is the linear vector quantization (LVQ) algorithm. A detailed description of various
types of clustering methods, including those used here, may be found in [11] and the
accompanying [27].

An alternative approach to optimizing (1) is to view the loss function as a function
of the clusters, rather than the centroids. More precisely, denoting x = (xq,...,xy,)
the cluster vector, with x; = j if z; € R;, and letting z;; = I{y,—;; z; (here I denotes the
indicator function), we can write (1) as

K n
D =)z — gl 2)

j=1 i=1

where the centroids are determined as
1 n
G=—> 1z 3)
e

withnj = 371" I{x,—j) being the number of points in the jth cluster. The two viewpoints
above are mathematically equivalent, in the sense that they yield the same global solu-
tion. However, a partition which defines clusters that are spatially overlapping does
not correspond to a set of centroids; hence the viewpoints are not identical.

In this paper, we introduce the Cross Entropy (CE) method as an alternative to
KM, FKM, and LVQ, for solving the clustering problem. It is not our intention to
repeat the principles of the CE method in detail in this paper. For this, we advise the
reader to refer to the CE tutorial [9]—which is also available on-line from the CE
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Homepage www.cemethod.org—and the CE monograph [22]. However, a short
summary of the basic concepts, including the main CE algorithm, in given in the
Sect. 2. Readers completely new to the CE method may find the example Matlab
code (see Appendix) instructive.

In correspondence with the two scenarios discussed above, we present two different
settings of the main CE Algorithm. Our first setting is based on reducing the clus-
tering problem to a combinatorial partition problem with n nodes and K partitions,
while in the second setting, we view (1) as a continuous multi-extremal optimization
problem. That is, in the first setting the decision variable is the cluster vector x and in
the second setting it is the vector of centroids (cy,...,cx). Both settings are treated
in [22].

The purpose of this paper is (a) to show how the CE method can be easily applied
to difficult optimization problems such as they occur in clustering analysis; (b) to
compare CE with standard clustering algorithms, and show that it can produce more
accurate answers. We do not claim that CE is the final answer to all clustering prob-
lems: sometimes speed is more important than accuracy, and sometimes the size of the
data set can be prohibitively large for CE. However, the strength of the CE algorithm
lies in its simplicity, accuracy, adaptability, and ultimately in the fundamental idea that
global optimization is about optimizing sampling distributions.

For more references on CE for solving combinatorial and continuous multi-extremal
problems (see [19] and [21]). Alternative well-known heuristics, capable of handling
the clustering problem, are tabu search [13], genetic algorithms [14], nested parti-
tioning [25] and the Ant Colony Optimization (ACO) meta-heuristic [10]. The recent
monograph [26] gives a good overview of stochastic search and optimization. A recent
(non-stochastic) global optimization approach to the clustering problem is [24]; a
recent fuzzy clustering algorithm is [29]; a recent meta-heuristic is Variable Neighbor-
hood Decomposition Search [16], and a recent local optimization technique for the
problem is J-means [15].

A fundamentally different approach to clustering analysis is to assume that the
data comes from a mixture of (usually Gaussian) distributions; and the objective is
to estimate the parameters of this mixture by maximizing the likelihood function. In
[6] a CE approach to global likelihood optimization for such mixture models is given,
with good results when compared with the EM algorithm [20].

The rest of the paper is organized as follows. In Sect. 2, we recapitulate, from
[22], the main CE Algorithm for solving combinatorial and continuous multi-extre-
mal optimization problems. In Sects. 3 and 4, we present the clustering problem as
a combinatorial partition and a continuous multi-extremal problem, respectively. In
Sect. 5, numerical results are given for several benchmark problems and for a real
problem concerning texture images. Here, we also compare the accuracy of the CE
method with the well-known KM, FKM, and LVQ algorithms, and show how CE
outperforms these standard methods with regard to finding the global optimum. In
Sect. 6, we present the conclusions and give directions for future research.

2 The CE method

The main idea of the CE method for optimization can be stated as follows: Suppose,
we wish to maximize some performance function S(x) over all states x in some set X.
Let us denote the maximum by y*, thus
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y" = max S(x) . 4)

First, we randomize our deterministic problem by defining a family of sampling
pdfs {f(:;v),v € V} on the set X. We assume that this family includes the degenerate
density at x*, say f(-; v¥). Next, we associate with (4) estimation problems of the form

Ly) =Pu(SX) = ¥) = EulisX)>y}- %)

Here, X is a random vector with pdf f(-;u), for some u € V and y € R. This is called
the associated stochastic problem (ASP).

Having defined an ASP, the goal of the CE algorithm is to generate a sequence
of tuples {(y:,v)}, that converge quickly to a small neighborhood of the optimal
tuple (y*,v*). More specifically, we choose some initial vy and a not too small g, say
0 = 1072, and proceed as follows:

1. Adaptive updating of y;. For a fixed v;_1, let y; be the (1 — p)-quantile of S(X)
under v,_1. A simple estimator ; of y; can be obtained by drawing a random sam-
ple Xi,...,Xy from f(-;v,_1) and evaluating the sample (1 — p)-quantile of the
performances:

Vi = S(a-oN> (6)

where S denotes the kth order statistic of {S(X;)}.
2. Adaptive updating of v;. For fixed y; and v,_q, derive v; from the solution of the
program

max D(v) = max Ey,  LisX)>y,) Inf(X;v) . (7)

The stochastic counterpart of (7) is as follows: for fixed 7 and v,_1, derive ¥; from
the following program

N
- 1
max D(v) = max < D lsxozz InfXiv). (8)

i=1

Remark 2.1 (Smoothed Updating) Instead of updating the parameter vector v directly
via the solution of (8) we use the following smoothed version

Vi=aV,+ (1 —a)V,_q, )

where V; is the parameter vector obtained from the solution of (8), and « is called
the smoothing parameter, with (typically) 0.7 < o < 1. Clearly, for « = 1, we
have our original updating rule. The reason for using the smoothed (9) instead
of the original updating rule is twofold: (a) to smooth out the values of ¥, (b)
to reduce the probability that some component V;; of ¥; will be zero or one at
the first few iterations. This is particularly important when ¥; is a vector or ma-
trix of probabilities. Note that for 0 < o < 1 we always have that v;; > 0, while

for « = 1 one might have (even at the first iterations) that either v;; = 0 or
Vii = 1 for some indices i. As result, the algorithm could converge to a wrong
solution.

Thus, the main CE optimization algorithm, which includes smoothed updating of
parameter vector v can be summarized as follows:
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Algorithm 2.1 (Main CE Algorithm for Optimization)

1. Choose some V. Set ¢ = 1 (level counter).

2. Generate a sample X{, ..., Xy from the density f(-; v,_1) and compute the sample
(1 — o)-quantile 7; of the performances according to (6).
3. Use the same sample Xj, ..., Xy and solve the stochastic program (8). Denote the

solution by V;.
4. Apply (9) to smooth out the vector v;.
5. If forsome t > d,say d =5,

Vi=Yi-1 =" =Yi-d, (10)

then stop (let 7" denote the final iteration); otherwise set t = ¢ + 1 and reiterate
from step 2.

Note that the parameter v is updated in (8) only on the basis of the (1 — ¢)% best
samples. These are called the elite samples. The main ingredients of any CE algorithm
are as follows.

e Trajectory generation: Generate random samples in X according to f(-; v,_1).
e Parameter updating: Update v on the basis of the elite samples, in order to produce
better performing samples in the next iteration.

Remark 2.2 (Maximum Likelihood Estimate) The updating rule for v follows from
cross-entropy minimization and often has a simple form. In particular, it is given by
the maximum likelihood estimate of v based on the elite samples.

Remark 2.3 (Minimization) Note that for a minimization program, we take the
o-quantile of the best (smallest) performances. Also, the > sign in (7) and (8) is
replaced by a < sign.

3 The clustering problem as a partition problem

In this section, we view the optimization of (1) as a combinatorial partition problem
with K partitions. The idea is to partition the points into K disjoint clusters such that
the cost of this partition (the loss function) is minimized. In particular, the clusters
Rq,..., Rk are represented through a cluster vector x € X = {1,... ,n}X as in (2).
Thus, x; = j means that point z; belongs to the jth cluster. In this case, the “trajectory
generation” (sampling from X') of the CE Algorithm 2.1 consists of drawing random
cluster vectors X € X according to an n-dimensional discrete distribution with inde-
pendent marginals, such that P(X; = j) = p;, i = 1,...,n, j = 1,...,K. Thus, in
Algorithm 2.1, the parameter vector v consists of the probabilities {p;;}. For K = 2
we may, alternatively, let X be a binary vector with independent components, the ith
component being 1 with probability p; and 0 with probability 1 — p;.

With the performance S(x) given in (2), and the centroids defined via (3), the
updating rule for p;; is

N
5 2=t lsxo <o i)
pt,l] == N )
2 k=1 lisxp<m

This has a very simple interpretation: we update the probability that X; = j by taking
the fraction of times that X; = j for the elite samples.

(11)
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Example 3.1 Let n = 5 and K = 2. To generate a feasible cluster we draw X from
a 5-dimensional Bernoulli distribution Ber(p) with independent marginals. Assume
that a particular outcome of X is x = (1, 0,0, 1,0). The associated partition is, clearly,
{R1, Rz} = {{1,4},{2,3,5}}. In this case the loss and the centroids can be explicitly
calculated, provided the points z1,22, 23, 24, Zs are given. Namely, the loss is
llz1 — e1l? + llza — el

+liz2 — eI + llz3 — el * + l1zs — el (12)

and the centroids are

o=@tz o=@+t (13)

4 The clustering problem as a continuous multi-extremal problem

We next present a CE approach for solving the clustering problem by viewing it as
a continuous multi-extremal optimization problem where, as in the KM method, the

centroids ¢y,. .., cx are the decision variables. In short, we consider the program
K
. . 2
min S(¢q,...,¢x) = min E E llz — g%, (14)
€1,y CK €1, nsCK
j=1z€R;

where R; = {z : ||z — ¢j|| < ||z — ¢kl||, k # j}. That is, R; is the set of data points that
are closer to ¢; than to any other centroid. Note that the performance (or objective)
function S to minimize is a real-valued function on X = R, In order to apply the
CE method, we need to specify (a) a parametric family of sampling distributions on
R4 and (b) the updating rules for the parameters of the sampling distribution. The
latter involves the Kullback-Leibler or CE distance, and results typically in updating
the parameters via the maximum likelihood estimates of the elite (i.e., best) samples.
It is important to realise that the choice of the sampling distribution is quite arbitrary
and has nothing to do with the (suspected) distribution of the cluster data. We choose
the sampling distribution to be dK-dimensional Gaussian of a specific form (to be
explained next). The reason for choosing a Gaussian distribution is that the updating
formulas become particularly simple.

For better insight and easy reference we consider the program (14) with K = 2 clus-
ters and dimension d = 2. The sampling distribution is such that, we independently
sample random centroids C; and C; according to 2-dimensional normal distributions
N(uq, 1) and N(u,, X»), respectively. The parameter vector v in Algorithm 2.1 now
consists of the mean vectors and covariance matrices {ft1, 5, X1, £2}. As in a typical
CE application for continuous multi-extremal optimization, we set the initial matrices
31 and X to be diagonal (with quite large variances on the diagonals) and then, we
proceed according to Algorithm 2.1 as follows:

1. Choose, deterministically or randomly, the initial mean vectors and covariance
matrices u;, Xj, i = 1,2.
2. Generate K = 2 sequences of centroids (for clusters 1 and 2, respectively)

Yi1,..., Yy and  You,...,Yon,

according to Y ~ N(;Lj, %)), ] = 1,2, independently. For each k = 1,...,N
calculate the objective function as in (14), with ¢; replaced by Y, j = 1,2.
@ Springer
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3. Complete Steps 2,3 and 4 of Algorithm 2.1. In particular, update the parame-
ters (r1, my) and (X1, ), according to the Kullback-Leibler cross-entropy (see
Remark 4.2).

4. If the stopping criterion (see Remark 4.1) is met, then stop and accept the result-
ing parameter vector (u17, o) (at the final 7'th iteration) as the estimate of the
true optimal solution (¢}, €5) to the program (14); otherwise reiterate from Step 2.

Remark 4.1 (Stopping criterion) There are many possible variations to the the stan-
dard stopping criterion in Step 5 of Algorithm 2.1. In particular, for continuous opti-
mization, criterion (10) may not be appropriate, as the 7 may, sometimes, never be
equal, thus preventing the algorithm from stopping. An alternative, for the present
problem, is to stop when the maximum of the diagonal elements in X;7 and X7 is
less than some 7, say 1074,

Remark 4.2 (Parameter updating) Using Remark 2.2, we see that the means and
variances for each centroid are updated simply as the corresponding sample mean
and sample variance of the N°1® = [oN1 elite samples. Specifically, if X, .. ., Xetic
are the elite samples corresponding to a specific centroid (for cluster 1 or 2), then the
related p and X are updated as

1 Nelile
r= Nelite Z Xi
i=1
and

Nelite
z= N% D Xi—mXi -
i=1
Note that, we have not assumed independent components for each centroid
distribution N(u, ¥). Therefore, in the 2-dimensional case, we need to update five
parameters for each centroid. For a d-dimensional normal distribution the number of
parameters is d + (d + 1)d/2. However, if we use independent components for each
N(u, X) centroid distribution, then the number of distributional parameters is 2d,
because only the means and variances need to be updated; the off-diagonal elements
of X are equal 0. It follows that for K clusters the total number of decision variables
is 2d K, when using independent components. Henceforth, we will only consider the
case with independent components.

Remark 4.3 (Starting positions) One advantage of the CE method is that, as a global
optimization method, it is very robust with respect to the initial positions of the cent-
roids. Provided that the initial standard deviations are chosen large enough, the initial
means have little or no effect on the accuracy and convergence speed of the algorithm.
In general, we choose the initial means and standard deviations such that the initial
sampling distribution is fairly “uniform” over the smallest rectangle that contains the
data points. Practically, this means that the initial standard deviations should not be
too small, say equal to the width or height of this “bounding box.”

For the KM method, however, a correct choice of starting positions is essential. A
well-known data-dependent initialization method is to generate the starting positions
independently, drawing each centroid from a d-dimensional Gaussian distribution
N(u, X), where u is the sample mean of the data and ¥ the sample covariance matrix
of the data.
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Remark 4.4 (Modifications) Various modifications to the standard CE algorithm can
be found in [22]. In our numerical experiments the following two modifications proved
useful as follows:

1. Injection. The idea behind the injection modification, first proposed in [6], is to
inject extra variance into the sampling distribution in order to avoid premature
“shrinkage” of the distribution. More precisely, let S} denote the best perfor-
mance found at the rth iteration, and o;* denote the largest standard deviation
at the ¢th iteration. If o/ is sufficiently small, and ‘S;k — S;‘_l‘ is also small, then
add B = ¢S} — S}, | to each standard deviation, for some fixed c. Appropriate
values for ¢ and § vary; however, for the texture image data in Sect. 5, ¢ = 50 and
8 = 0.05 were used. When using CE with injection, a possible stopping criterion
(see also Remark 4.1) is to stop once a certain number of injections, Injyax say, is
reached.

Note that if B is very small (< §, say), we can just add some constant value, say 3,
to avoid having injections that are too small.

2. Component-wise updating. The idea behind component-wise updating is, as the
name suggests, to update the parameter vectors component-by—component. In
particular, only a single component of one of the mean vectors is updated at
each iteration. The order in which the components are updated can be either
according to some fixed permutation, such as updating 11 first, then w1, and so
on, or according to some other (possibly random) permutation. In our numerical
experiments we chose the second option. Component-wise updating is often used
in simulated annealing (see e.g., [12]). However, in the context of CE this is, to
our knowledge, the first application of its kind.

5 Numerical experiments

In this section, we present numerical experiments using the CE Algorithm 2.1 as well
as the three well-known clustering heuristics KM, FKM, and LVQ. The Matlab code
for these last three algorithms was taken from the Matlab classification toolbox [27]
(see also [11]). We apply the methods first to two benchmark examples and then to a
practical application in image analysis. We found that, in the examples, the continu-
ous optimization approach of Sect. 4, is more accurate than the discrete optimization
approach of Sect. 3. Hence, we only present our numerical results for the former.

5.1 Benchmark problems

Two well-known types of 2-dimensional data sets were used from [27]:

(a) Banana data: Points are scattered around a segment of a circle.
(b) 3-Gaussian mixture data: Points are generated from a mixture of three
2-dimensional Gaussian distributions.

Generation of these data sets is straightforward. For convenience a banana data gen-
eration algorithm is included in Sect. 7.2.

Tables 1-3, present a comparative study of CE Algorithm 2.1 and the traditional
clustering ones for n = 200 and various cluster sizes K, on the data sets (a) and (b). In
all experiments, we use « = 0.7 and o = 0.025. In all cases, a sample size of N = 800
is taken, so that the number of elite samples is N¢i® = o N = 20. All initial standard

@ Springer



J Glob Optim (2007) 37:137-157 145

deviations are 14 for the banana data and six for the 3-Gaussian data, corresponding
to the width/height of the bounding box for the data. The initial means are chosen
uniformly over this bounding box. The starting positions for the other algorithms
are chosen according to the standard initialization procedure for the KM algorithm
discussed in Remark 4.3. We stop the CE algorithm when the performance no longer
changes in two decimal places for ten iterations, or if the largest standard deviation is
less than n = 10~%.

Each method was repeated ten times for both data sets (a) and (b). We use the
following notations in the tables: T denotes the average total number of iterations; yr
denotes the averaged solution over ten runs; y* is the best known solution; & denotes
the average relative experimental error (based on ten runs) with respect to the best
known solution y*. That is,

= *
=11 (15)
14
Similarly, e, and &* denote the largest and smallest relative experimental errors.
Finally, CPU denotes the average CPU time in seconds on a 3 GHz PC.

In order to accurately identify the global minimum, we repeated our experiments
many times, using different ¢, N, and smoothing parameter « (see Remark 2.1). The
smallest value found from these experiments is given by y* for each case. It was found
that the smallest CE performance of the ten runs gives a reliable estimate of the true
global minimum.

We note that CE is quite robust with respect to the parameters N, ¢, and «. That is,
similar good results were obtained for parameter choices in the ranges N = 400—4000,
a=02-0.8,and o = 0.01 —0.2.

We see that the CE algorithm, although significantly slower, is more accurate and
consistent than the other algorithms. Amongst the faster algorithms, FKM is by far the
best for these data. Observe also from Tables 1-3 that, as K increases, the efficiency
(in terms of &, &,, &*) of CE increases relative to its counterparts for KM, FKM,
and LVQ. In general, we found this to be the case. This can explained by arguing as
follows:

1. The number of minima of the objective function in (14) increases with K.
2. The CE method, which presents a global optimization method typically avoids
the local minima, and as a result settles down at the global minimum.

Table 1 Performance of the four different methods for the data sets (a) and (b), withn = 200, K = 5,
N = 800, Nelite = 20, and & = 0.7

Approach T VT y* g Ex e* CPU

(a) Banana data set

CE 46.2 517597  515.613  0.0038474 5.90906e-010  0.0222069  8.4844
KM 12.5 536.72 515.613 0.0409353 0.00120497 0.254114 0.0155
FKM 749  521.298 515.613  0.0110255 0.0110232 0.0110265  0.0313
LVQ 17.6 541.542  515.613 0.0502883 0.000675106 0.345366 0.021375
(b) Three Gaussian mixture

CE 37.8  37.5173 373444  0.00462838  5.39914e-009  0.0462837  7.0049
KM 79 55.5058  37.3444  0.486322 0 2.31036 0.0235
FKM 549  46.8244  37.3444  0.253852 0.0199335 0.519954 0.0234
LVQ 72 52.8893  37.3444  0.416257 0.00562148 2.30022 0.0156667
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Table 2 Performance of the four different methods for the data sets (a) and (b), with n = 200,
K =10, N = 800, Nelit¢ = 20 and & = 0.7

Approach T T y* g Ex e* CPU
(a) Banana data set

CE 89.3 259.958  251.563  0.0333721  0.0081804 0.0977549  32.78
KM 10.1 304.103  251.563  0.208856 0.0563821 0.472844 0.0548
FKM 106.4  262.803  251.563  0.0446827  0.0327853 0.0741326  0.0766
LVQ 15.2 301.617  251.563  0.198975 0.0385996 0.399317 0.0281
(b) Three Gaussian mixture

CE 68.5 16.6375  15.3991  0.0804214  8.80297e-005  0.20986 25.441
KM 11.2 24.7502 15.3991 0.607251 0.276936 1.53184 0.113
FKM 80 204847 153991  0.330259 0.26562 0.595413 0.0578
LVQ 7.6 22.599 15.3991 0.467559 0.288255 0.769473 0.0155556

Table 3 Performance of the four different methods for the data sets (a) and (b), with n = 200,
K =20, N = 800, N°i® =20, and & = 0.7

Approach T T y* g £x &* CPU
(a) Banana data set
CE 122.6 131.466 126.716 0.0374862 0 0.0818811 89.9206
KM 9.1 177.689 126.716 0.402263 0.178212 0.706801 0.2901
FKM 252.4 148.842 126.716 0.174614 0.114661 0.23969 0.3259
LVQ 13.4 161.707 126.716 0.27614 0.173362 0.394308 0.0421
(b) Three Gaussian mixture
CE 122 7.03842 6.61466 0.0640637 0.0151182 0.130905 89.2449
KM 9.6 14.0762 6.61466 1.12803 0.691861 1.8025 0.2624
FKM 138.6 9.48018 6.61466 0.433208 0.256727 1.08898 0.1859
LVQ 12.3 12.9741 6.61466 0.961423 0.509683 1.68469 0.0344
Fig.1 The CE results for 8
vector quantization of the 2-D < Do
banana data set. Circles 6| O ce ..
designate the final cluster X K-means e e o
centers (centroids) produced 4t . Q@' *
by CE. Crosses are cluster AT
centers produced by the KM 2t S et . .
algorithm MO
of Lo LA

D . o o LI ’..g .

T el R LT

-6} : S B .

_8 . .

-6 -4 -2 0 2 4 6 8
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Fig.2 The CE results for 5 -
vector quantization of the 2-D + Data ‘
3-Gaussian data set. Circles al O CE
designate the final cluster X_K-means . .
centers (centroids) produced
by CE. Crosses are cluster 3 o
centers produced by the KM :‘. o eue . '@,"
1 + ) 3 .
algorithm 2 3 ...f. .. ..é(a
. . o
1 i,.. .. ~..P
. ¥ LS. .
& . . . o
of LW e @
DLy .: ’ :’
At © s
2 . . . . . . .
-1 -05 0 0.5 1 1.5 2 25 3

Table 4 Evolution of Algorithm 2.1 for the banana problem with n = 200, d = 2, K = 5,N =
800, N°lit® = 20 and & = 0.7, and with o =3

‘ 7 St of
1 1786.40 1386.39 3.00000
2 1360.80 862.073 3.06570
3 1042.16 770.373 3.48781
4 921.520 708.242 3.49147
5 810.130 616.364 3.57854
6 699.275 625.932 269131
7 597.351 565.497 1.41700
8 554.466 534.791 0.79520
9 534.290 522.097 0.55452
10 524.233 518.937 0.35925
1 519.332 516.814 0.20460
12 517.210 516.146 0.13030
13 516.389 516.028 0.08783
14 515.974 515.716 0.06146
15 515.783 515.679 0.03990
16 515.676 515.645 0.02653
17 515.641 515.628 0.01627
18 515.625 515.618 0.01039
19 515.618 515.615 0.00685
20 515.615 515.614 0.00489
21 515.614 515.613 0.00342
2 515.613 515.613 0.00208
23 515.613 515.613 0.00130
24 515.613 515.613 0.00085

3. The alternatives, KM, FKM and LVQ, which present local optimization methods
are typically trapped by these local minima.

It is clear that the “classical” KM method with an average relative experimental
error of 10-100% compares poorly to the CE method, which is slower but yields a
vastly superior relative error of less than 1%.

Figures 1 and 2 shows the difference in the placement of the centroids for CE
(circles) and KM (crosses) for the banana and 3-Gaussian data, respectively. Note
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that for the 3-Gaussian data the KM algorithm has (wrongly) placed two centroids in
the lower left-hand cluster.

Finally, Table 4 presents the evolution of Algorithm 2.1 for the banana problem
with n = 200, and K = 5. Here S} denotes the best (smallest) performance of the elite
samples, 7; the worst performance of the elite samples, and o, the largest standard
deviation (all at iteration f).

5.2 A fairer comparison

Because CE is much slower than the other three algorithms, one could object and say
that the previous results are not fair on the other algorithms. Namely, one could run
the other algorithms multiple times for each run of the CE algorithm. To assess if CE
still outperforms the other algorithms in accuracy when, we allow multiple runs, we
conducted similar experiments as before, but now using the same amount of time for
each algorithm.

All results that follow use CE with the following parameters: N = 800, N¢lit¢ = 20
and o = 0.7. The stopping criterion used for these experiments was the same as that
used in the previous numerical experiments. As before, the initial cluster means are
random on the spread of the data in each dimension, and the initial standard deviations
in each dimension are equal to the maximum spread of the data over all dimensions.
In the Tables 5-14 below, min, max and mean are the minimum, maximum, and mean
of the replications (ten in the case of CE; many more for the other algorithms). The
CPU gives the fotal CPU time in seconds. The last column lists the average number of
iterations required for each replication. The 3-Gaussian and Banana data sets are the
same as before. We have added a Spiral data set and the "XOR’ data set, both from
[27], the PCB3038 dataset from [2] and a 5-Gaussian data set. The 5-Gaussian data
set was generated by drawing 300 points from a mixture of five Gaussian distributions
with the following weights, means, and covariances:

cluster mean vector covariance matrix weight

1 03
)

! 0

(o

(42 1)
(

(

[«=3\S)

0

2) 0.1
30
0 3) 0.3
1 07

(0.7 1 ) 03

As noted before, the 3-Gaussian and banana data sets were taken from the Classi-
fication Toolbox.

D
|
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Table 5 5-Gaussian data set, with K = 5 clusters

min max mean trials CPU av its
CE 946.164 1379.72 1203.8 10 119.126 43.8
KM 946.164 20249.8 1730.94 4,713 119.499 8.1725
FKM 953.088 3588.99 1219.08 6,835 119.258 30.4739
LVQ 946.165 20246.6 1597.97 10,083 119.224 9.62967
Table 6 5-Gaussian data set, with K = 20 clusters

min max mean trials CPU av its
CE 254.7 281.532 267.332 10 1819.77 168.1
KM 335.185 1356.75 565.062 5,797 1821.16 11.4426
FKM 271.257 483.349 338.759 7,081 1821.26 131.123
LVQ 290.518 1381.91 552.814 40,590 1820.07 14.8994
Table 7 3-Gaussian data set, with K = 5 clusters

min max mean trials CPU av its
CE 37.3444 37.4955 37.3595 10 73.749 39.7
KM 37.3444 237.819 51.8926 5,944 73.958 7.63089
FKM 38.0888 56.7619 42.5827 3,402 73.855 51.0188
LVQ 37.3446 239.401 50.198 10,072 73.823 6.51728
Table 8 3-Gaussian data set, with K = 20 clusters

min max mean trials CPU av its
CE 6.93033 8.48561 7.40947 10 961.607 131.2
KM 8.10137 36.5534 13.8324 4,494 962.457 10.8369
FKM 7.0981 16.0369 9.26119 3,973 962.561 190.337
LVQ 7.94878 35.6519 13.1938 35,781 961.774 9.48928
Table 9 Banana data set, with K = 5 clusters

min max mean trials CPU av its
CE 515.613 538.943 520.219 10 108.67 59
KM 515.613 1870.87 557.903 8,836 108.863 10.8833
FKM 521.297 521.299 521.298 3,480 108.774 75.4983
LVQ 515.614 1031.04 552.229 6,984 108.85 14.9954
Table 10 Banana data set, with K = 20 clusters

min max mean trials CPU av its
CE 125.607 134.363 129.072 10 885.54 120.8
KM 134.968 300.128 181.277 7,456 886.07 9.45333
FKM 139.327 167.908 149.067 2,892 888.232 241.989
LVQ 129.716 302.239 168.528 21,689 885.715 13.3571
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Table 11 XOR data set (1,000 points), with K = 5 clusters

min max mean trials CPU av its
CE 8867.88 8868.41 8868.02 10 440.013 48.3
KM 8867.88 14014.8 9008.92 8,954 441.383 28.7916
FKM 9013.31 9013.32 9013.31 637 444.316 483.356
LVQ 8868.05 12023.3 9187.76 6,680 440.49 27.291
Table 12 XOR data set (1,000 points), with K = 10 clusters

min max mean trials CPU av its
CE 4824.88 4956.16 4853.05 10 1706.47 94.2
KM 4825.09 6382.55 4992.18 14,273 1710.83 26.8819
FKM 5165.29 5216.86 5193.27 1,491 1714.22 440.872
LVQ 4825.7 6876.7 5042.75 14,840 1707.17 29.1883
Table 13 Spiral data set (200 points), with K = 5 clusters

min max mean trials CPU av its
CE 27.2287 27.4268 27.2947 10 68.9489 36.6
KM 27.2287 50.954 28.1902 2,573 69.6973 13.7101
FKM 28.4778 28.478 28.4779 2,559 69.1008 68.0008
LVQ 27.2291 52.2351 29.9398 8,789 68.9809 8.09182
Table 14 PCB3038 data set, with K = 10 clusters

min max mean trials CPU av its

CE 5.60251-108 5.84443.108 5.6527-108 10 9654.39 139.3
KM 5.60251-108 8.70012-108 5.88778-108 22,976 9661.27 34.9701
FKM 5.66532-108 5.66532-108 5.66532-108 4,883 9661.78 232.149
LVQ 5.60251-108 8.39822.108 5.90523-108 9,333 9657.99 119.684

5.3 Image Texture Data

In this section, we apply the clustering procedure to texture images. Texture data
usually exhibits a complex spatial-frequency pattern, which is hard to describe. Some
examples of real-life textures are depicted in Fig. 3, where a number of different
texture patterns are easily distinguished by human eye. However, such a task is
not trivial using clustering algorithms. There are well-known techniques and algo-
rithm for analyzing and classifying texture patterns. Some of them are based on
statistical autocorrelation properties [7], wavelet transform [8] and Markov random
fields [4].

To proceed, note that the gray scale value of each pixel in a texture image is mean-
ingless without its neighbors. A common way to characterize a texture is to examine
the entire neighborhood of each pixel. In our examples we use 5 x 5 pixel neighbor-
hood as a feature patch. It is equivalent to a 25-dimensional data vector z;, where i
corresponds to a specific pixel location in the image. The entire texture image pro-
duces a large data set of texture vectors {z;}. The high self-similarity of these texture
patterns results in a large number of vectors clustered around the centroids {c;}. We
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Fig. 3 Different image texture
patterns

e
et R S I S F S
gt LTl & & = Kok 5 | &
b g o et i 0P IR B S
IS

v

b g AP b i A
oG pd B oy
L R N WP gt P S »

S

i‘.';, ;
'h‘ [ - BT

A

assume that K = 5 clusters and a total of n = 256 points are sufficient to describe
the textures of Fig. 3 with low distortion. Table 15 presents the comparative study of
the CE, KM, FKM and LVQ algorithms for a “raffia” test image. As with the “fairer
comparison” tables, the CE approach was run (repeated) 10 times, and the others
were allotted the same amount of time to be continually repeated. Figure 4 shows the
original raffia texture image, taken from the USC-SIPI Image Database [1].
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Table 15 Raffia Image Data Set, with K = 5 clusters

min mean max g £x g* trials CPU av its
CE 29.67 29.97 30.53 0.0101 0.0001 0.0291 10 1948.96 13.4
KM 29.67 30.03 38.54 0.0123 0 0.2992 72,958 1949.51 11.71
FKM 35.99 35.99 35.99 0.2131 0.2131 0.2132 7,563 1950.52 174.25
LVQ 29.67 30.15 38.57 0.0162 0.0001 0.3003 71,237 1949.49 10.12

Fig. 4 Raffia image
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Figure 5 depicts our actual test image, which is a 20 x 20 sub-image of the original

raffia texture, chosen to represent the whole image.

Figure 6 depicts all of the 256 sub-images of size 5 x 5 generated from the 20 x 20

raffia test image.
It is important to note the following:

e In contrast to many of the test cases, the KM and LVQ algorithms perform signifi-

cantly better than FKM here.

e When applying the standard CE algorithm (without modifications), our results
(not presented here) indicate that both KM and LVQ perform better, both in

accuracy and speed, than CE.

e However, when applying the component-wise updating and injection modifica-
tions discussed in Sect. 4, CE outperforms all other methods.

All results that follow use CE with the component-wise updating, and injection,
with the following parameters: N = 100, Nelite — 10, and o = 0.9, Injmax = 100. The
initial means are random on the spread of the data in each dimension, and the initial
standard deviations in each dimension are equal to the maximum spread of the data
over all dimensions. We stop when the number of injections that have occurred so far
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5 10 15 20 25

Fig. 6 Collection of 256 sub-images of size 5 x 5 of the raffia test image

is equal to the maximum number of injections allowed (100 here). In all figures, the
image grey levels take values between 0 and 1.

Figure 7 depicts the images corresponding to the optimal five cluster centers (five
vectors of length 25) found by CE.
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Fig. 7 The optimal five cluster centers found by CE

6 Conclusions and directions for future research

This paper presents, an application of the cross-entropy method to the clustering and
vector quantization problems.

The proposed algorithm involves the generation of random clusters using either
independent k-point distributions (Sect. 3) or independent Gaussian distributions
(Sect. 4), followed by an updating of the parameters of the associated distributions
using cross-entropy minimization. Our numerical studies suggest that the proposed
algorithm is reliable, in the sense that in approximately 99% of the cases the rel-
ative error ¢ does not exceed 1%. Our main conclusion is that the CE offers an
easily implementable and accurate alternative to the standard clustering methods
like KM, FKM, and LVQ method, if one is interested in obtaining globally optimal
solutions.

Although method presented here is more computationally intensive per run than
the standard algorithms, it is typically able to outperform them even when the stan-
dard algorithms are allowed as much CPU time as the CE method. We note that,
for applications where time is critical or computational resources are scarce, or with
extremely large data sets and large number of dimensions, the method presented here
may consume an unacceptable amount of computational resources.

Further topics for investigation include (a) establishing convergence of Algo-
rithm 2.1 for finite sampling (i.e., N < oo) with emphasis on the complexity and
the speed of convergence under the suggested stopping rules; (b) establishing con-
fidence intervals (regions) for the optimal solution; and (c) application of parallel
optimization techniques to the proposed methodology.
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We note that in addition to its simplicity, the advantage of using the CE method is
that it does not require direct estimation of the gradients, as many other algorithms
do (for example, the stochastic approximation, steepest ascent or conjugate gradi-
ent method). Moreover, as a global optimization procedure the CE method is quite
robust with respect to starting conditions and sampling errors, in contrast to some
other heuristics, such as simulated annealing or guided local search.

Although in the present examples the discrete (partition) CE approach did not
compete well with the continuous CE approach, the former may be useful when the
performance is a complicated function of the data. For example, the data could rep-
resent a collection of proteins, each of which has a list of characteristics. In this case
the performance function is not merely the sum of the Euclidean distances but some
complicated function of these characteristics.
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and the Israel Science Foundation (grant No. 191-565). Thomas Taimre acknowledges the financial
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Appendix
7.1 Example matlab code

In this paper, we used the CE method to optimize a highly multi-modal function in
(dK)-dimensional space, by sampling the potential solutions from a family of (dK)-
dimensional Gaussian distributions, updating the dK means and variances via the
sample mean and sample variances of the elite samples. Thus, the sampling distri-
bution comes closer at each iteration to the “degenerate” distribution, which is the
optimal sampling distribution for the problem.

The easiest way to explain the general idea is to provide a concrete 1-dimensional
(1-D) toy example. Suppose, for example, we wish to optimize the 1-D, bi-modal
function

S(x) = e @2” 4 0.8 ¥

The following Matlab code should speak for itself.
S = inline('exp(-(x-2).72) + 0.8%exp(-(x+2).72)");

mu = -10; sigma = 10; rho = 0.1; N = 100; eps = 1E-3;
t=0; % iteration counter
while sigma > eps

t = t+1;

X = mu + sigma*randn(N,1);

SX = S(x); % Compute the performance.

sortSX = sortrows([x SX],2);

mu = mean(sortSX((l-rho)*N:N,1));

sigma = std(sortSX((l-rho)*N:N,1));

fprintf('%g %6.9f %6.9f %6.9f \n’, t, S(mu),mu, sigma)
end
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7.2 Generating banana data

Banana shaped data sets occur frequently in clustering and classification test problems.
Below is a simple Matlab function that generates such data.

\begin{verbatim}

function b = banana(n,sigma,radius, thetal, thetal)

% Generate a Banana-shaped data set

$ n - number of data points (default: 200)

% sigma - move points according to a normal dist. with this
% standard deviation in both x and y directions

% (default: 1)

% radius - the radius of the circle (of which the "banana" is
% an arc (default: 5)

% thetal - starting angle of the arc (default: 9*pi/8)
% theta2 - ending angle of the arc (default: 19*pi/8)
if nargin<4,thetal=pi + pi/8;end
if nargin<5,theta2=(5*pi/2 - pi/8) - thetal;end
if nargin<3,radius=5;end
if nargin<2,sigma=1;end
if nargin<1l,n=200;end
randn (’'seed’, 123456789); %optional
rand(’seed’, 987654321); %optional
angles=thetal + rand(n,1l)*theta2; % angles between pi/8 and 11*pi/8
b=radius.* [cos (angles),sin(angles)]; % transform these to random points
% on an arc of a circle
b=b + sigma*randn(n,2); % shift these points off the arc ind.
% normally in x and y directions
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